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This work examines the impact of defects on the resonant response
of single-wall carbon nanotube (CNT) resonators using classical
molecular dynamics (MD) simulations. The work demonstrates
that the presence of defects in CNTs leads to appreciable resonant
mode splitting. A dimensionless parameter has been introduced to
quantify this phenomenon. It is observed that increasing the
degree of asymmetry in the system generally increases the magni-
tude of splitting. Given the centrality of single-peak Lorentzian
frequency responses in the current device design paradigm, which
is utilized in applications such as resonant mass sensing, the non-
Lorentzian response characteristics of imperfect devices could
present both opportunities and challenges in the future design and
development of resonant nanosystems. [DOI: 10.1115/1.4023057]

1 Introduction

Since their discovery in 1991 [1], the distinct thermal, mechani-
cal, and electrical properties of carbon nanotubes (CNTs) have
motivated researchers to employ them in a wide variety of appli-
cations [2,3]. One such application is in resonant nanoelectrome-
chanical systems (NEMS) [4–6], where single-wall CNTs are
ideal to use because of their high elastic modulus [7,8], low mass
density, and high natural frequencies (typically in the GHz–THz
range) [9]. These benefits have been exploited to date in various
applications, including mass and force sensing and signal process-
ing [10–15].

The frequency response of an ideal, single-degree-of-freedom
resonator typically exhibits a Lorentzian structure and the
associated quality factor (Q) can be calculated using a standard

3 dB offset method. However, this structure can begin to break
down in the presence of imperfections, such as point defects or
isotopes, which are inevitably present in nanosystems, irrespective
of the fabrication process. For example, it is well known that proc-
esses like irradiation can introduce vacancies in CNTs and these
defects can alter the CNTs’ thermal, mechanical, electronic, and
optical properties. Recent experiments conducted on silicon
[16,17] and silver–gallium [11] nanowires demonstrate that the
single Lorentzian peak splits into two peaks in the presence of an
irregular cross section (due to the moments of inertia along the
two orthogonal axes of vibration being distinct in the presence of
geometric asymmetry). This mimics previous observations of
asymmetry-induced mode splitting in bells and rings, among other
macroscale systems (see, for example, Refs. [18–22]). Although
the mode shapes and quality factors of pristine CNTs have been
investigated using MD simulations [23,24], to the best of the
authors’ knowledge, no theoretical work has been performed to
investigate how the presence of defects can alter CNT resonator
performance. Accordingly, in this work, we consider the impact
of structural defects on a representative CNT’s frequency
response structure and discuss possible practical implications.

2 Methodology

CNTs are generally characterized by their chirality (represented
by the chiral vector (n,m)), which specifies how the graphene
sheet has been rolled to form a particular architecture [3]. Here, we
consider a cantilevered, single-wall carbon nanotube (SWCNT) of
chirality (10,10), which is 8 nm long, fixed at one end, and contains
defects, as shown in Fig. 1. The adaptive intermolecular reactive
empirical bond order (AIREBO) potential [25] is used to model the
covalent bond interactions between carbon atoms. In this model,
the potential energy of the covalent bonds is given by

EREBO
ij ¼ VR

ij rij

� �
þ bijV

A
ij rij

� �
(1)

where Vij
R and Vij

A are the repulsive and attractive pairwise poten-
tials between atoms i and j, whose magnitude varies with the sepa-
ration distance rij, and bij represents the bond order term that
accounts for the strength of a particular bond (see Ref. [25] for
additional details). The dynamics of the CNT in this work are
simulated through MD simulations using the Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS) package
[26], which is a classical MD simulation tool developed by Sandia
National Laboratories. Initially, the CNT is equilibrated to a
desired temperature in an NVT ensemble, wherein the number of

Fig. 1 A representative (10,10) 8 nm long, single-wall carbon
nanotube with (a) a single defect and (b) multiple defects
highlighted
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atoms (N), the volume (V), and the temperature (T) are main-
tained constant, using a Nose–Hoover thermostat [27] with a time
step of 0.5 fs (1/40th of the lowest time period in the phonon spec-
tra of carbon atoms). A force is subsequently applied on all of the
atoms at the tip of the CNT in the transverse direction for half of
one period of oscillation. This acts in addition to the interatomic
forces that exist within the system. After the removal of force, the
CNT is allowed to freely oscillate in a microcanonical ensemble
(NVE) where the total energy of the system is conserved. Note
that to ensure linearity, the applied force is constrained such that
the maximum elongation in the transverse direction is restricted to
5% of the length of the CNT—a constraint commensurate with
previous small force experiments [28].

3 Results and Discussion

The resonant frequency associated with the dominant mode of
vibration is obtained from a Fourier transform of the time varia-
tion of the kinetic (or potential) energy. Figure 2 shows the fre-
quency response obtained from a Fourier transform of kinetic
energy of the transversely excited CNT with and without defects.
It can be observed that introducing a single defect in the system as
shown in Fig. 1(a) breaks the previously observed symmetry and
leads to the splitting of the resonant modes; ultimately yielding a
non-Lorentzian frequency response. It is known that for a pristine
system, the stiffness and mass matrices are symmetric. However,
introducing a point defect (removing an atom) in a pristine CNT
results in imbalance of the stiffness and mass matrices, which in
turn leads to the excitation of two modes with frequencies very
close, but not identical, to one another. Carbon nanotubes with
chiral vectors n=m also exhibit mode splitting behavior under a
transverse excitation because of the asymmetric orientation of
atoms with respect to the axis of vibration. Likewise, a similar
effect can be observed in the presence of isotopes where a C12

atom has been replaced with a C24 atom or another heavier atom.
The effect in this latter scenario may not be as prominent as in the
case of vacancies (absence of atoms) because the overall stiffness
is not altered.

It should be noted that the aforementioned scenarios are intrin-
sic phenomenon, independent of temperature and the applied
boundary conditions of the system. Also, note that in the case of a
non-Lorentzian frequency response (as shown in Fig. 2), defining
Q in the conventional way (using a 3 dB offset) can be problem-
atic because of the presence of two local peaks in the frequency

domain and corresponding beating phenomenon in the time
response.

To quantify the magnitude of this resonant mode splitting, a
dimensionless parameter D is introduced that is defined as

D ¼ f1 � f2j j
f1 þ f2

(2)

where f1 and f2 are the frequencies corresponding to the two peaks
shown in Fig. 2. Not surprisingly, the magnitude of D varies sig-
nificantly with the number of defects (vacancies) present in the
system. Figure 3(a) shows the variation of the dimensionless pa-
rameter D as a function of the percentage of atoms randomly
removed from the CNT. Ten different initial configurations are
generated using a random seed at each percentage of defects
shown in Fig. 3(a). The magnitude of D is then calculated in each
case using the previously described method and the recovered var-
iation is plotted. It can be observed that as the number of defects
in the CNT increases, the magnitude of splitting generally
increases. Interestingly, as the percentage of defects increases to
7%, D appears to reach a maximum and further removal of atoms
does not increase D. This seems to imply that the asymmetry of
the distribution of defects affects the magnitude of D more than

Fig. 2 A comparison of the frequency response of kinetic
energy of a (10,10) 8 nm long CNT under transverse excitation
with a single defect (black) and without defects (red). Note that
the fast Fourier transform algorithm used in this work has a re-
solution of 62.5 MHz.

Fig. 3 Variation of the nondimensional mode splitting parameter
D as a function of the percentage of atoms removed from the CNT.
In subfigure (a) the atoms are removed randomly; in subfigure (b)
the atoms are removed along a line given by the orientation angle
h 5 45 deg.
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the absolute number of defects. Hence, it is possible that for the
same percentage of defects, a CNT with all the defects located on
one side of the axis of vibration has larger D than the one with
defects distributed symmetrically on either side of the axis. This
hypothesis is supported by the fact that minimum values of D are
low even with high defect concentrations. For large enough con-
centrations of defects, the degree of asymmetry may actually
decrease, due in part to the potential for more than two dominant
modes, decreasing D. A scenario wherein all of the defects are
confined to a particular angle (h¼ 45 deg) along the circumfer-
ence of the CNT is also of interest. The D in this case increases
from 0.002 to 0.012 as the percentage of atoms removed increases
from 0.25% to 1.5% as shown in Fig. 3(b). The spread in the mag-
nitude of D in this case is less than the results in Fig. 3(a) due to
the high degree of asymmetry, a result of the value of h chosen.

In addition to concentration, the location and orientation
of defects can also affect the near-resonant response of a CNT.
Figure 4(a) shows the frequency response structure associated
with a CNT resonator with a single defect located at different
angles as measured with respect to the direction of force (Y) along
the circumference. As can be observed from Fig. 4(b), varying the
angle h results in a variation of the amplitudes of the two peaks.
At h¼ 0 deg, only one peak is evident (at f2), as the location of

defect is aligned with the primary axis of vibration (Y-axis). As h
increases from 0 deg to 45 deg, the ratio of amplitudes of the peaks
decreases and approaches almost 1. Then as h increases further
from 45 deg to 90 deg, the opposite trend is observed, eventually
leading to a single peak at f1 for h¼ 90 deg. A similar effect was
also reported in recent experimental works [16,17]. Note that the
value of D in this particular study lies in the range of
0.0082–0.0091, which is an order of magnitude smaller than the
values of D shown in Fig. 3. This implies that the magnitude of
splitting is relatively independent of the orientation of defects.

One application where CNT resonators have shown particular
promise is resonant mass sensing. Here, the amount of adsorbed
mass is typically estimated from the shift in the peak frequency of
a Lorentzian response structure [10,15], which is implicitly
founded upon the single-degree-of-freedom dominant response of
the system. If the device exhibits a Lorentzian response behavior,
with a sharp peak at resonance (high quality factor), then one can
accurately detect these shifts in frequency and, thus, very small
amounts of added mass. While pristine CNTs exhibit a perfect
Lorentzian frequency response, as shown herein, in the presence
of defects (or a heavier isotope), there will be multiple peaks in
the frequency response and estimating the added-mass induced
frequency shift is no longer straightforward. Recently, Gil Santos
et al. [16] derived a more rigorous method to estimate the changes
in mass and mechanical properties of the adsorbate in the presence
of multiple peaks. However, considerable work remains to extrap-
olate these results to other systems and application areas.

4 Conclusions

In conclusion, to obtain a Lorentzian frequency response, a
structure must maintain symmetry in terms of geometry, mass,
and stiffness. Here, we have shown that even a single point defect
(vacancy) can appreciably break this symmetry and induce reso-
nant mode splitting in CNTs. This phenomenon is independent of
external factors, such as temperature and boundary conditions.
Note that the magnitude of splitting generally increases with
degree of asymmetry in the system. Though this phenomenon
complicates the paradigm currently employed in the design of res-
onant nanosystems, efforts can, and are, being made to exploit
this non-Lorentzian behavior.
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